Laboratory 2

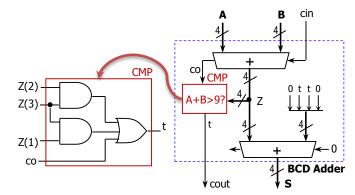
(Due date: **002/003**: October 7th, **004**: October 8th, **005**: October 9th)

OBJECTIVES

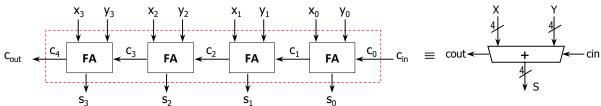
- ✓ Use the Structural Description on VHDL.
- ✓ Test arithmetic circuits on an FPGA.

VHDL CODING

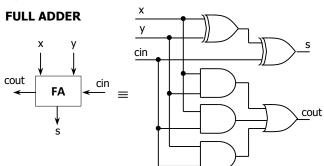
✓ Refer to the <u>Tutorial</u>: <u>VHDL for FPGAs</u> for a list of examples.


FIRST ACTIVITY (100/100)

• PROBLEM: BCD Addition of two numbers. The operands (A and B) are 4-bit numbers represented in BCD (where only numbers from 0 to 9 are allowed). The result S is also represented in BCD. There is also a BCD carry out (cout). If any of the operands is greater than 9, the result S is invalid.


Example: 7 + 8 = 15. Here, cout = 1, and S = 0101 = 5.

This circuit can be built out of two 4-bit binary adders and a few logic gates as depicted in the figure \Rightarrow


✓ Operation: If $A + B > 9 \rightarrow S = 6 + Z$, cout = 1. Here, by adding 6, we "correct" the binary sum to make it look as BCD code. If $A + B \le 9 \rightarrow S = Z$, cout = 0.

The figure below depicts the internal architecture of the 4-bit binary adder. The full adder circuit is also shown.

- ✓ NEXYS A7-50T: Create a new Vivado Project. Select the XC7A50T-1CSG324 Artix-7 FPGA device.
- ✓ Write the VHDL code for the BCD Adder. Use the Structural Description: Create a separate file for the Full Adder, the 4-bit adder, the 'CMP' block, and the top file (BCD Adder).
- ✓ Write the VHDL testbench to test the circuit for the following cases:
 - **A**=0x6, **B**=0x4, cin=0 \rightarrow cout=1, **S**=0000
 - ♦ A=0x8, B=0x9, $cin=0 \rightarrow cout=1$, S=0111
 - A=0x4, B=0x8, $cin=1 \rightarrow cout=1$, S=0011
 - A=0x5, B=0x8, $cin=1 \rightarrow cout=1$, S=0100
 - A=0x2, B=0x7, $cin=0 \rightarrow cout=0$, S=1001

- ✓ Perform Functional Simulation and Timing Simulation of your design. **Demonstrate this to your TA**.
- ✓ I/O Assignment: Create the XDC file. Nexys A7-50T: Use SW15-SW0 for the inputs, and LED4-LED0 for the outputs.
- ✓ Generate and download the bitstream on the FPGA and test. Demonstrate this to your TA.
- Submit (<u>as a .zip file</u>) the five generated files: VHDL code (4 files), VHDL testbench, and XDC file to Moodle (an assignment will be created). DO NOT submit the whole Vivado Project.

TA signature:	Date:	